Энциклопедия АСУ ТП Спонсор проекта: Skip Navigation LinksЭнциклопедия АСУ ТП : 5 ПИД-регуляторы : 5.3 Модификации ПИД-регуляторов Соспонсор:




Робот BotEyes




Промышленные контроллеры RealLab!

5.3. Модификации ПИД-регуляторов

Постоянно растущие требования рынка к снижению времени регулирования, к качеству переходного процесса, к степени ослаблению влияния внешних возмущений и шумов, к упрощению процедуры настройки и необходимость управления объектами с большой транспортной задержкой инициировали появление множества модификаций ПИД-регуляторов.

5.3.1. Регулятор с весовыми коэффициентами при уставке

В классическом ПИД-регуляторе сигнал ошибки равен разности между задающим воздействием и выходной переменной объекта : . Однако качество регулирования можно улучшить, если ошибку вычислять отдельно для пропорциональной, дифференциальной и интегральной составляющей [Astrom] (рис. 5.43):

, ,

(5.53)

где - ошибка для пропорциональной, дифференциальной и интегральной составляющей; - настроечные весовые коэффициенты.

Рис. 5.43. ПИД-регулятор с весовыми коэффициентами b и c при уставке

Уравнение такого регулятора аналогично (5.36):

(5.54)

Отметим, что весовой коэффициент при интегральной составляющей отсутствует, что необходимо для обеспечения нулевой ошибки в установившемся режиме.

Пользуясь выражениями (5.53), (5.54), а также рис. 5.43 и переходя к изображениям по Лапласу, уравнение регулятора можно записать в виде

=

(5.55)

Можно заметить, что второе слагаемое здесь содержит передаточную функцию классического ПИД-регулятора (5.39). Поэтому регулятор, представленный на рис. 5.43, можно заменить эквивалентным ему регулятором, показанным на рис. 5.44, если блок останется классическим регулятором (5.40), а блок будет иметь передаточную функцию вида

.

(5.56)

Рис. 5.44. Выделение блока в структуре ПИД-регулятора

Рис. 5.45. Реакция замкнутой системы (рис. 5.44) с регулятором на скачок при , , для объекта вида (5.50) при ,

Структура полученного регулятора имеет замечательное свойство: блок не входит в контур регулирования. Это означает, что робастность, качество регулирования, реакция на шумы и внешние возмущения по-прежнему будут определяться только параметрами , т.е. параметры блоков ( и ) настраиваются независимо от параметров .

Параметры и определяют вид АЧХ блока и позволяют улучшить качество реакции регулятора на изменение уставки . На рис. 5.45 показана реакция замкнутой системы с описанным регулятором при разных значениях весовых коэффициентов и . Как видно из рисунка, изменение параметров и не влияет на отклик системы на шумы и внешние возмущения .

Коэффициент часто выбирают равным нулю, чтобы избежать дифференцирования случайных резких выбросов в управляющем сигнале , если они возможны.

Описанный регулятор при и иногда называют И-ПД регулятором, а при и - ПИ-Д регулятором.

5.3.2. Регулятор с формирующим фильтром для сигнала уставки

Дальнейшим усовершенствованием регулятора со структурой, показанной на рис. 5.44, является применение фильтра в блоке , передаточная функция которого приобретает вид

,

(5.57)

где .

(5.58)

Здесь - постоянная времени фильтра, которую можно найти следующим образом. Предположим, что модуль передаточной функции (5.57) при style='color:red'> имеет выброс (аналогичный выбросу на рис. 5.41). Величина такого выброса на АЧХ замкнутой системы характеризуется параметром "колебательность" , который равен отношению коэффициента передачи в точке максимума (обозначим ее ) к коэффициенту передачи на нулевой частоте. Этот максимум можно убрать, если потребовать, чтобы на частоте модуль коэффициента передачи фильтра был равен . Из этого условия можно получить значение постоянной времени фильтра :

.

(5.59)

Пример реакции системы с регулятором, использующим формирующий фильтр, приведен на рис. 5.46.

Рис. 5.46. Реакция замкнутой системы с регулятором с фильтром (5.57) при на скачок при , , для объекта вида (5.50) при , ; обозначения соответствуют рис. 5.44

5.3.3. Принцип разомкнутого управления

Регулятор можно построить и без использования обратной связи. Если известны действующие на систему возмущения и желаемая реакция на изменение управляющего воздействия, то в некоторых случаях можно найти такую передаточную функцию регулятора, при которой получается желаемая реакция системы. Достоинством такого подхода является высокая скорость реагирования системы на внешние возмущения, поскольку для выработки управляющего воздействия не нужно ждать, пока управляющий сигнал пройдет через объект и возвратится в регулятор по цепи обратной связи. Кроме того, система с разомкнутым управлением в принципе не может быть неустойчивой, поскольку в ней отсутствует обратная связь.

Недостатком является принципиальная невозможность получения высокой точности при неизвестных возмущениях и низкой точности модели объекта, невозможность полной компенсации возмущений для объектов с транспортной задержкой и проблема физической реализуемости обратных операторов.

В зарубежной литературе системы с разомкнутым управлением называют системами с "прямой связью". Термин "прямая связь" выбран для того, чтобы подчеркнуть отличие этого метода от метода обратной связи. Ниже оба термина будут использованы как синонимы.

Достоинства разомкнутого и замкнутого управления можно объединить в одном регуляторе. Наилучшие характеристики системы получаются, если ее проектировать по принципу разомкнутого управления, а обратную связь использовать только для дальнейшей минимизации погрешности.

В предыдущем параграфе был рассмотрен частный случай прямой связи, которая реализована с помощью блока (рис. 5.44). Основной принцип применения разомкнутого управления в ПИД-регуляторах состоит в следующем. Задача проектирования делится на две части. Первая часть - обеспечение робастности и ослабления влияния шумов и внешних возмущений - решается с помощью параметров . Вторая часть - обеспечение заданной реакции на управляющее воздействие - решается с помощью параметров регулятора с прямой связью. Регуляторы, обеспечивающие возможность независимого решения этих двух задач называют "регуляторами с двумя степенями свободы" и на их условном изображении присутствуют два входа (рис. 5.48).

Структура ПИД-регулятора, использующего принцип разомкнутого управления, показана на рис. 5.47. Здесь регулятор спроектирован как в системе с классическим ПИД-регулятором, а передаточные функции блоков и выбираются так, чтобы улучшить реакцию системы на входное воздействие .

Рис. 5.47. Регулятор, комбинирующий принцип разомкнутого управления и принцип обратной связи

Рис. 5.48. Регулятор с двумя степенями свободы - обобщение классического ПИД-регулятора

Принцип действия системы состоит в следующем. Изменение сигнала поступает на вход объекта управления через блок , минуя цепь обратной связи. Передаточная функция блока выбирается таким образом, чтобы выходной сигнал системы в точности соответствовал входному сигналу, , т.е. чтобы сигнал ошибки был равен нулю. Поскольку в реальной системе при воздействии внешних возмущений или изменении уставки , то вступает в действие обычный ПИД-регулятор , который с помощью обратной связи пытается свести появившуюся ошибку к нулю.

Непосредственно по рис. 5.47 можно записать передаточную функцию системы от входа к ее выходу (для начала положим ):

, откуда = =.

(5.60)

Отсюда передаточную функцию замкнутой системы можно записать в виде

.

(5.61)

Здесь первый член выбирают, как следует из описанного выше принципа действия системы, так, чтобы в идеальных условиях и , т.е. желаемой передаточной функцией системы является . Поэтому второй член в (5.61) необходимо сделать равным нулю. Этого можно достичь двумя способами. Первый из них состоит в том, чтобы сделать бесконечно большим петлевое усиление . Чаще используют второй путь, который состоит в выборе такой передаточной функции , чтобы выполнялось соотношение , т.е.

.

(5.62)

Таким образом, в отличие от регулятора с обратной связью, у которого точность обеспечивается благодаря делению сигнала ошибки на большое число (усиление интегратора), в регуляторах с прямой связью точность обеспечивается путем компенсации ошибки, т.е. с помощью операции вычитания.

Поскольку в системе, показанной на рис. 5.47, ошибка на низких частотах и в установившемся режиме равна нулю благодаря интегральному члену в ПИД-регуляторе , высокую точность компенсации ошибки с помощью прямой связи достаточно обеспечить только на высоких частотах. Это облегчает задачу синтеза передаточной функции .

Нахождение обратной динамики объекта

Как следует из (5.62), для нахождения передаточной функции необходимо найти обратный оператор . Благодаря алгебраической форме изображений операторов по Лапласу, формально сделать это достаточно просто. Например, для объекта с передаточной функцией (5.5) обратный оператор будет равен

.

(5.63)

Однако такие операции наталкиваются на проблему физической реализуемости. Выражение (5.63) содержит член , который является обратным по отношению к идеальной задержке, т.е. является изображением операции идеального предсказания. Кроме того, для реализации (5.63) необходима операция идеального дифференцирования, реализация которой также достаточно проблематична.

Рассмотрим другой пример. Пусть передаточная функция объекта описывается выражением . Обратный оператор имеет вид . Однако полюс передаточной функции лежит в правой полуплоскости, что свидетельствует о неустойчивости системы, описываемой обратным оператором.

Следующей проблемой является компенсация полюсов передаточной функции нулями, появившимися после обращения оператора в (5.62). Как будет показано ниже, такая компенсация может привести к резкому различию времени реакции системы на изменение уставки и на внешние возмущения.

Для решения перечисленных проблем нужно наложить ограничения на вид передаточной функции . При этом соотношения и уже не будут выполняться точно, однако появляется возможность физической реализации обратного оператора .

Во-первых, необходимо потребовать, чтобы транспортная задержка блока была не менее транспортной задержки объекта . Это исключает необходимость предсказания.

Во-вторых, если имеет полюса в правой полуплоскости, то они должны совпадать с полюсами . Это обеспечивает устойчивость обратного оператора.

В-третьих, чтобы исключить необходимость дифференцирования, порядок знаменателя должен быть не ниже порядка знаменателя .

Таким образом, задача синтеза регулятора с прямой связью является задачей аппроксимации нереализуемой передаточной функцией искусственно выбранной реализуемой функцией по критерию минимума погрешности.

Синтез обратного оператора удобно начинать с очевидного требования, что в установившемся режиме должно выполняться соотношение

,

(5.64)

где символом , мы обозначили оператор, который приближенно соответствует оператору .

Желательно, чтобы передаточная функция обратного оператора была малой на тех частотах, на которых она имеет максимальную чувствительность к изменению параметров.

Используя перечисленные требования, обратный оператор (5.63) можно аппроксимировать выражением

.

(5.65)

Эта передаточная функция удовлетворяет изложенным выше требованиям. Параметр здесь определяет степень ослабления шумов дифференцирования на частотах выше .

Регулятор с передаточной функцией объекта

В очень простом частном случае, для систем с монотонным откликом на ступенчатое воздействие, вид передаточной функции можно выбрать совпадающим с нормированной передаточной функцией объекта:

,

(5.66)

где . Тогда, в соответствии с (5.62)

.

(5.67)

Недостатком такого подхода является медленная реакция замкнутой системы на изменение задающего воздействия. Достоинством является отсутствие каких-либо расчетов и настроек для гарантированного получения отклика без перерегулирования (рис. 5.49). Следует, однако, помнить, что отклик замкнутой системы на задающее воздействие никак не связан с откликом на внешние возмущения и шум, поэтому настройка регулятора должна быть выполнена обычными методами.

Рис. 5.49. Реакция замкнутой системы с ПИД-регулятором с прямой связью (5.66), (5.67) на скачок при , K=6, для объекта вида (5.50) при , ; обозначения соответствуют рис. 5.47.

Рис. 5.50. Реакция замкнутой системы с ПИД-регулятором с прямоугольным импульсом перед сигналом уставки при , , для объекта вида (5.50) при ,

Импульсное управление без обратной связи

Еще одна модификация принципа разомкнутого управления состоит в том, что перед тем, как подать сигнал уставки, подают прямоугольный импульс большой амплитуды (рис. 5.50). Поскольку скорость нарастания реакции на прямоугольный импульс пропорциональна его амплитуде, длительность переходного процесса можно существенно уменьшить по сравнению со случаем, когда сигнал уставки подается в форме одиночного скачка (рис. 5.50).

Реакция на прямоугольный импульс состоит из фазы нарастания сигнала и фазы спада. Амплитуду импульса выбирают максимально возможной. Обычно она ограничивается мощностью исполнительных устройств системы. Длительность импульса выбирают такой, чтобы максимум реакции на импульс был равен значению уставки (единице при уставке в форме единичного скачка). Задержку подачи сигнала уставки выбирают так, чтобы она совпала с моментом появления максимума отклика на прямоугольный импульс.

В данном методе время выхода системы на режим может быть сделано как угодно малым, если использовать импульс достаточно большой амплитуды. В общем случае перед подачей сигнала уставки можно подавать несколько импульсов разной амплитуды и длительности. Параметры импульсов и задержку выбирают, решая численными методами задачу оптимизации, минимизируя погрешность отклонения отклика системы от требуемой формы. Для линейных систем полученные при оптимизации параметры остаются без изменений для любых значений уставки, если амплитуду прямоугольного импульса изменять пропорционально значению уставки.

Компенсация внешних возмущений с помощью прямой связи

Если внешние возмущения, воздействующие на объект управления, можно измерять до того, как они пройдут на выход системы , то их влияние можно существенно ослабить с помощью прямой связи. Прямая связь, в отличие от обратной, позволяет скомпенсировать погрешность быстрее, чем обратная связь обнаружит ошибку как разность между управляемой величиной и управляющим воздействием.

Рис. 5.51. Принцип компенсации возмущающих воздействий с помощью прямой связи

Ранее мы предполагали, что внешние возмущения приложены к входу системы. Такое допущение было справедливо при качественном анализе степени подавления возмущений с помощью обратной связи. Однако для компенсации возмущений необходимо идентифицировать передаточную функцию от точки приложения возмущений к выходу системы . При этом объект управления приобретает второй вход - вход возмущений и описывается функцией с двумя аргументами, и :.

Одним из вариантов компенсации члена является использование принципа прямой связи (разомкнутого управления), как показано на рис. 5.51. Здесь - передаточная функция регулятора с прямой связью.

Уравнение полученной системы можно записать непосредственно по рис. 5.51 с учетом (5.68):

, или .

(5.69)

Отсюда следует, что уменьшить влияние внешних возмущений можно двумя способами: увеличивая петлевое усиление контура с обратной связью или выбрав , т.е.

.

(5. 70)

Обращение динамического оператора здесь сопряжено с проблемами, описанными в разделе "Нахождение обратной динамики объекта". В ряде практических случаев бывает достаточно считать, что оператор статический, что существенно упрощает его нахождение. Статические операторы используют, в частности, при компенсации влияния скорости ветра или температуры наружного воздуха для стабилизации температуры в промышленных теплицах.

В частном случае, когда точка приложения возмущения совпадает с входом объекта (как на рис. 5.35), (5.68) упрощается до и из (5.70) получим

Метод прямой связи позволяет скомпенсировать возмущение до того, как оно пройдет через объект. Это существенно увеличивает общее быстродействие системы и исключает ее потенциальную неустойчивость.

Примером применения описанного метода является компенсации влияния погодных условий на промышленную теплицу. Для компенсации влияния температуры наружного воздуха, скорости ветра, осадков необходимо установить снаружи теплицы соответствующие датчики и выполнить идентификацию передаточной функции от каждого датчика до точки измерения температуры внутри теплицы, затем найти обратный оператор (5.70) и включить его в структуру регулятора.

Правильно настроенный контроллер с прямой и обратной связью позволяет ослабить влияние нагрузки на управляемую переменную до 10 раз [Techmation], www.protuner.com.

Недостатком метода является невозможность достаточно точной идентификации возмущения и точки его приложения к объекту, поскольку они распределены в пространстве, а также проблемы, связанные с нахождением обратного оператора (раздел "Принцип разомкнутого управления").


© RLDA Ltd. info@rlda.ru  Рейтинг@Mail.ru Спонсоры проекта: , а также