Энциклопедия АСУ ТП Спонсор проекта: Skip Navigation LinksЭнциклопедия АСУ ТП : 5 ПИД-регуляторы : 5.4 Особенности реальных регуляторов : 5.4.6 Дискретная форма регулятора Соспонсор:




Робот BotEyes




Промышленные контроллеры RealLab!

5.4.6. Дискретная форма регулятора

Непрерывные переменные удобно использовать для анализа и синтеза ПИД-регуляторов. Для технического воплощения необходимо перейти к дискретной форме уравнений, поскольку основой всех регуляторов является микроконтроллер, контроллер или компьютер, которые оперируют с переменными, полученными из аналоговых сигналов после их дискретизации по времени и квантования по уровню.

Вследствие конечного времени вычисления управляющего воздействия в микроконтроллере и задержки аналого-цифрового преобразования между моментом поступления аналогового сигнала на вход регулятора и появлением управляющего воздействия на его выходе появляется нежелательная задержка, которая увеличивает общую задержку в контуре регулирования и снижает запас устойчивости.

Основным эффектом, который появляется при дискретизации и который часто "открывают заново", является появление алиасных частот в спектре квантованного сигнала в случае, когда частота дискретизации недостаточно высока. Аналогичный эффект возникает при киносъемке вращающегося колеса автомобиля. Частота алиасного сигнала равна разности между частотой помехи и частотой дискретизации. При этом высокочастотный сигнал помехи смещается в низкочастотную область, где накладывается на полезный сигнал и создает большие проблемы, поскольку отфильтровать его на этой стадии невозможно.

Для устранения алиасного эффекта перед входом аналого-цифрового преобразователя необходимо установить аналоговый фильтр, который бы ослаблял помеху по крайне мере на порядок на частоте, равной половине частоты дискретизации. Обычно используют фильтр Баттерворта второго или более высокого порядка. Вторым вариантом решения проблемы является увеличение частоты дискретизации так, чтобы она по крайней мере в 2 раза (согласно теореме Котельникова) была выше максимальной частоты спектра помехи. Это позволяет применить после дискретизации цифровой фильтр нижних частот. При такой частоте дискретизации полученный цифровой сигнал с точки зрения количества информации полностью эквивалентен аналоговому и все свойства аналогового регулятора можно распространить на цифровой.

Переход к конечно-разностным уравнениям

Переход к дискретным переменным в уравнениях аналогового регулятора выполняется путем замены производных и интегралов их дискретными аналогами. Если уравнение записано в операторной форме, то сначала выполняют переход из области изображений в область оригиналов. При этом оператор дифференцирования заменяют производной, оператор интегрирования - интегралом.

Существует множество способов аппроксимации производных и интегралов их дискретными аналогами, которые изложены в курсах численных методов решения дифференциальных уравнений. В ПИД-регуляторах наиболее распространенными являются простейшая аппроксимация производной конечной разностью и интеграла - конечной суммой.

Рассмотрим интегральный член ПИД-регулятора: . Продифференцировав обе части по времени, получим . Заменяя дифференциалы в этом выражении конечными разностями (левыми разностями), получим , где индекс обозначает, что данная величина взята в момент времени (обратим внимание, что здесь и ниже индекс в обозначает не номер временного шага, а интегральный коэффициент ПИД-регулятора). Из последнего выражения получим

.

(5.101)

Таким образом, очередное значение интеграла можно вычислить, зная предыдущее и значение ошибки в предыдущий момент времени. Однако такая формула имеет свойство накапливать ошибку вычислений с течением времени, если отношение недостаточно мало. Более устойчива другая формула интегрирования с правыми разностями, когда значение ошибки берется в тот же момент времени, что и вычисляемый интеграл:

.

(5.102)

Рассмотрим дифференциальный член ПИД-регулятора с фильтром (см. раздел "Погрешность дифференцирования и шум").

Переходя в этой формуле от изображений к оригиналам, получим . Заменяя дифференциалы конечными приращениями, получим разностное уравнение

.

(5.103)

Для сходимости итерационного процесса (5.103) необходимо, чтобы , т.е.

.

(5.104)

При итерационный процесс (5.103) становится колебательным, что недопустимо для ПИД-регулятора.

Лучшими характеристиками обладает разностное уравнение, полученное при использовании правых разностей:

.

(5.105)

Здесь условие сходимости выполняется для всех и ни при каких значениях параметров не возникает колебаний. Кроме того, последняя формула позволяет "отключить" дифференциальную составляющую в ПИД регуляторе путем назначения , чего нельзя сделать в выражении (5.103), поскольку при этом возникает деление на ноль.

Можно использовать еще более точные формулы численного дифференцирования и интегрирования, известные из курса численных методов решения уравнений.

Величина шага дискретизации выбирается как можно меньше, это улучшает качество регулирования. Для обеспечения хорошего качества регулирования он не должен быть больше чем 1/15...1/6 от времени установления переходной характеристики объекта по уровню 0,95 или 1/4...1/6 от величины транспортной задержки [Изерман]. Однако при увеличении частоты дискретизации более чем в 2 раза по сравнению с верхней частотой спектра возмущающих сигналов (по теореме Котельникова) дальнейшего улучшения качества регулирования не происходит.

Если на входе регулятора нет антиалиасного фильтра, то частоту дискретизации выбирают в 2 раза выше верхней граничной частоты спектра помехи, чтобы использовать цифровую фильтрацию. Необходимо учитывать также, что исполнительное устройство должно успеть отработать за время .

Если контроллер используется не только для регулирования, но и для аварийной сигнализации, то такт дискретизации не может быть меньше, чем допустимая задержка срабатывания сигнала аварии.

При малом такте дискретизации увеличивается погрешность вычисления производной. Для ее снижения можно использовать сглаживание получаемых данных по нескольким собранным точкам перед этапом дифференцирования.

Уравнение цифрового ПИД-регулятора

Основываясь на изложенном выше, уравнение дискретного ПИД-регулятора можно записать в виде

,

(5.106)

где - номер временного такта. Величины и вычисляют по выражениям (5.102) и (5.105). Для начала работы алгоритма выбирают обычно , , , однако могут быть и другие начальные условия, в зависимости от конкретной задачи регулирования.

Отметим, что алгоритм, полученный путем простой замены операторов дифференцирования и интегрирования в выражении (5.36) конечными разностями и конечными суммами

,

(5.107)

(здесь - индекс суммирования отсчетов от начала процесса до текущего i-того временного такта) обладает плохой устойчивостью и низкой точностью, как это было показано выше. Однако с ростом частоты дискретизации различие между приведенными двумя алгоритмами стирается.

Инкрементная форма цифрового ПИД-регулятора

Рис. 5.83. Инкрементная форма ПИД-регулятора

Довольно часто, особенно в нейросетевых и фаззи-регуляторах, используют уравнение ПИД-регулятора в виде зависимости приращения управляющей величины от ошибки регулирования и ее производных (без интегрального члена). Такое представление удобно, когда роль интегратора выполняет внешнее устройство, например, обычный или шаговый двигатель. Угол поворота его оси пропорционален значению управляющего сигнала и времени. В фаззи-регуляторах при формулировке нечетких правил эксперт может сформулировать зависимость управляющей величины от величины производной, но не может - от величины интеграла, поскольку интеграл "запоминает" всю предысторию изменения ошибки, которую человек помнить не может.

Инкрементная форма ПИД-регулятора получается путем дифференцирования уравнения (5.36):

;

Для получения нулевой ошибки регулирования на выходе инкрементного регулятора должен стоять интегратор (рис. 5.83):

Переходя в полученных выражениях к конечным разностям, получим дискретную форму инкрементного ПИД-регулятора:

,

(5.108)

где , .

Более устойчивое и точное разностное уравнение можно получить, подставив в формулу выражения для и из (5.106).

Инкрементная форма регулятора удобна для применения в микроконтроллерах, поскольку в ней основная часть вычислений выполняется с приращениями, для представления которых можно использовать слово с малым количеством двоичных разрядов. Для получения значения управляющей величины можно выполнить накопительное суммирование на финальной стадии вычислений:

.


© RLDA Ltd. info@rlda.ru  Рейтинг@Mail.ru Спонсоры проекта: , а также